Learning Cmake

Pau Garcia i Quiles <pgquiles@elpauer.org>

Version 0.4.2 (200811092042GMT+1)

Slides: http://www.elpauer.org/stuff/learning_cmake.pdf

Part |
Build systems — what for?

Why?

You write an application (source code) and need
to:

Compile the source

Link to other libraries

Distribute your application as source and/or binary
You would also love if you were able to:

Run tests on your software

Run test of the redistributable package
See the results of that

Compiling

Manually?

gcc -DMYDEFINE -¢c myapp.o myapp.cpp
Unfeasible when:
you have many files

some files should be compiled only in a particular
platform, are you going to trust your brain?

different defines depending on debug/release,
platform, compiler, etc

You really want to automate this step

Manually?
ld -0 myapp file1.o file2.0 file3.0 -Ic -Imylib

Again, unfeasiable if you have many files,
dependence on platforms, etc

You also want to automate this step

Distribute your software

Traditional way of doing things:
Developers develop code
Once the software is finished, other people package it

There are many packaging formats depending on
operating system version, platform, Linux distribution,
etc: .deb, .rom, .msi, .dmg, .src.tar.gz,

tar.gz, InstallShield, etc

You'd like to automate this but, is it possible to
bring packagers into the development process?

Testing

You all use unit tests when you develop
software, don't you? You should!

When and how to run unit tests? Usually a three-
step process:

You manually invoke the build process (e.g. make)
When it's finished, you manually run a test suite

When it's finished, you look at the results and
search for errors and/or warnings

Can you test the packaging? Do you need to invoke
the individual tests or the unit test manually?

Testing and gathering results

Someone needs to do testing for feach platform,
then merge the results

Is it possible to automate this? “make test”? what
about gathering the results?

Automate!

Your core business is software development, not
software building
What are you selling?

A flight simulator? or,

A “flight simulator built with an awesome in-house
developed built system”?

The client does not care about how you built your
software, they are only interested in having the best
software application possible

So should you: modern build systems should be
able to build the software, package it, test it and tell

Part Il
Build systems tour

Autotools

¥ |t's been in use for many years and it's still widely
used

Autohell?

€ You need to write scripts in Bourne shell ('sh'), m4
(you all develop software in m4, don't you?),

€ Only Unix platform => Visual Studio, Borland, etc in
Win32 are unsupported (Cygwin/MinGW supported)

€& Dependency discovery is mostly manual (no bundled
“finders” grouping several steps)

€ Usually long, difficult to understand scripts
2 Autotools create a Makefile for 'make'

Jam

€ The original implementation (Perforce Jam) is
quite buggy

€ There are many slightly different implementations

3, Cross platform

€ Dependency discovery is mostly manual (no
bundled “finders” grouping several steps)
Compiles and links by itself
€& Users cannot use the tools they are used to
€What if Jam is not available for that platform?
2 Allows parallel linking

¢Python DSL

The interpreter is not always available
You need to learn almost a programming language

$ Cross-platform

You are actually writing a software app which
happens to build another software app

ﬁDoes not scale well

Dependency discovery is mostly manual (no
bundled “finders” grouping several steps)

Compiles and links by itself

WEN

Second generation of bksys, tries to fix Scons

No installation: it's a 100KB script you
redistribute with your source

¢ It's a security issue: if a bug is found, every app
needs to redistribute a new waf version

: Noteross-ptattorm—wonrteverbe Recently added
. Win32

Dependency discovery is mostly manual (you can
write “finders” but you cannot reuse them)

Compiles and links by itself

CMake

@ Cross-platform
@ Very simple script language

. Dependency discovery is awesome:
FIND PACKAGE

* Scales very well: KDE4 is using it (4+ MLOC)

Creates a project files for Makefile, Visual Studio,
“evelop, Eclipse, etc

z Users can use the tools they are used to

Cannot overcome the limitations those IDEs/'make’
have

Part llI
Meeting CMake

The Kitware build and test chain

CTest + BullsEye/gcov
CDash

What is CMake

Think of it as a meta-Make

CMake is used to control the software
compilation process using simple platform and
compiler independent configuration files

CMake generates native makefiles and
workspaces that can be used in the compiler
environment of your choice: Visual C++,
Kdevelop3, Eclipse, XCode, makefiles (Unix,
NMake, Borland, Watcom, MinGW, MSYS,
Cygwin), Code::Blocks etc

Projects are described in CMakeLists.txt files

Build flow

CMakeLists.txt

.vcproj / Makefile / etc

Native building tools (Visual Studio,
Eclipse, KDevelop, etc)

[|

|

|

1

|

|

1

:

: .0bj/ .0
. Native linking tools (lib.exe,
. i link.exe, Id, etc)

"
1
|

.exe/ .dll/.lib/.a/.so/.dylib

Tools the developer is already familiar with

In-source vs out-of-source

Where to place object files, executables and
libraries?

In-source:
helloapp/hello.cpp
helloapp/hello.exe
Out-of-source:
helloapp/hello.cpp
helloapp-build/hello.exe
CMake prefers out-of-source builds

The CMake workflow

Have this tree: If Eclipse:
myapp myapp/trunk
build myapp-build
trunk Eclipse has problems if the
: build dir is a subdir of the
1
cd myapp/build source dir

cmake ../trunk

make (Unix) or open project (VC++)

On Windows, you can also use CMakeSetup
(GUI). Cmake 2.6 includes a multiplatform Qt4-
based GUI.

Very simple executable

PROJECT(helloworld)
SET(hello SRCS hello.cpp)
ADD EXECUTABLE(hello ${hello_SRCS})

PROJECT is not mandatory but you should use
it

ADD EXECUTABLE creates an executable
from the listed sources

Tip: add sources to a list (hello_ SRCS), do not
list them in ADD_EXECUTABLE

Showing verbose info

To see the command line CMake produces:
SET(CMAKE_VERBOSE_ MAKEFILE on)
Or:
$ make VERBOSE=1
Or:

$ export VERBOSE=1
$ make

Tip: only use it if your build is failing and you
need to find out why

Very simple library

PROJECT(mylibrary)

SET(mylib SRCS library.cpp)
ADD LIBRARY(my SHARED ${mylib SRCS})

ADD_LIBRARY creates an static library from the
listed sources

Add SHARED to generate shared libraries
(Unix) or dynamic libraries (Windows)

Shared vs static libs

Static libraries: on linking, add the used code to
your executable

Shared/Dynamic libraries: on linking, tell the
executable where to find some code it needs

If you build shared libs in C++, you should also
use soversioning to state binary compatibility
(too long to be discussed here)

The CMake cache

Cmake is very fast on Unix but noticeably slow
on Windows with Microsoft Visual C++ due to
VC++ slowliness to check types

The CMake cache stores values which are not
usually changed

Edit the cache using ccmake (Unix) or
CMakeSetup (Windows)

Variables & cache (l)

Unconditional set
SET(vartl 13)

"var1" is set 13
If “var1” already existed in the cache, it is shadowed by
this value

This call does not overwrite “var1” value in the cache, if it
existed

Variables & cache (ll)

Reuse the cache

SET(var2 17 ... CACHE ...)
“var2” already in cache => keep cache value

“var2” not yet in cache (usually during first cmake
run) => var2 is set to 17 and this goes into the

cache

The value in the cache can be changed by editing
CMakeCache.txt, or "make edit_cache", or running
ccmake or running cmake-gul.

Variables & cache (lll)

Unconditional set & overwrite cache
SET(var3 23 ... CACHE FORCE)

“var3” always takes this value, whether it was
already in the cache or not

Cached value will always be overwritten => this
makes editing the cache manually impossible

Regular expressions

Worst side of Cmake: they are non-PCRE

Use STRING(REGEX MATCH ...), STRING
(REGEX MATCHALL ...), STRING(REGEX
REPLACE ...)

You will need to try once and again until you find
the right regex

I'm implementing STRING(PCRE_REGEX
MATCH ...), etc based on PCRE. Not sure if it
will be on time for Cmake 2.6.0 — It won't be

Back/Forward compatibility

Since Cmake 2.0, ask for at least a certain
version with CMAKE_MINIMUM_REQUIRED

Since Cmake 2.6, tell Cmake to behave like a
certain version (> 2.4) with
CMAKE_POLICY(VERSION

major.minor|.patch])

Part IV
Real world CMake:

dependencies between targets

Adding other sources

PROJECT (clockapp)
clockapp :
ADD SUBDIRECTORY (libwak
build / —~ (libwakeup)
A trunk ADD SUBDIRECTORY (clock)
doc =
img SET (wakeup SRCS

A libwakeup WELEND . CPR)

wakeup.cpp ADD_ LIBRARY(wakeup SHARED
wakeup.h ${wakeup SRCS})

A clock
Cloeijggg*‘SET(clock_SRCS clock.cpp)

clock.h ADD_EXECUTABLE(ClOCk S
{clock SRCS})

No need to declare them

Usually, no need to specify type
SET creates and modifies variables

SET can do everything but LIST makes some
operations easier

Use SEPARATE_ARGUMENTS to split space-
separated arguments (i.e. a string) into a list
(semicolon-separated)

In Cmake 2.4: global (name clashing problems)
In Cmake 2.6: scoped

Changing build parameters

Cmake uses common, sensible defaults for the
preprocessor, compiler and linker

Modify preprocessor settings with
ADD DEFINITIONS and
REMOVE_DEFINITIONS

Compiler settings: CMAKE_C _FLAGS and
CMAKE CXX FLAGS variables

Tip: some internal variables (CMAKE_*) are
read-only and must be changed executing a
command

IF (expression) Always repeat the
expression/condition

ELSE]
R It's possible to avoid that

ENDIF (expression) but | won't tell you how

Process a list:
FOREACH (loop var)

ENDFOREACH (loop var)
WHILE (condition)

ENDWHILE (condition)

Visual Studio special

To show .h files in Visual Studio, add them to the
list of sources in ADD EXECUTABLE /
ADD LIBRARY

SET (wakeup SRCS wakeup.cpp)
IF(WIN32)
SET (wakeup SRCS ${wakeup SRCS}
wakeup.h)
ENDIF (WIN32)
ADD LIBRARY (wakeup SHARED ${wakeup SRCS})

Use SOURCE_GROUP if all your sources are in
the same directory

Managing debug and release
builds

SET (CMAKE BUILD TYPE Debug)

As any other variable, it can be set from the

command line:
cmake -DCMAKE BUILD TYPE=Release ../trunk

Specify debug and release targets and 3rdparty
libs:

TARGET LINK LIBRARIES(wakeup RELEASE $
{wakeup SRCS})

TARGET LINK LIBRARIES(wakeupd DEBUG $
{wakeup SRCS})

Standard directories... not!

Libraries built in your project (even if in a
different CmakeLists.txt) is automatic (in rare
occasions: ADD_DEPENDENCIES)

If the 3" party library or .h is in a “standard”
directory (PATH and/or LD_LIBRARY_PATH) is
automatic

If in a non-standard dir:

Headers: use INCLUDE_DIRECTORIES

Libraries: use FIND LIBRARY and link with the
result of it (try to avoid LINK_DIRECTORIES)

INSTALL(TARGETS clock wakeup RUNTIME
DESTINATION bin LIBRARY DESTINATION
lib)

Would install in /usr/local/bin and /usr/local/lib
(Unix) or %PROGRAMFILESY%\projectname
(Windows)

Part V

Platform checks and external
dependencies

Finding installed software

FIND PACKAGE(Qt4 REQUIRED)

Cmake includes finders (FindXXXX.cmake) for
~130 software packages, many more available
in Internet

If using a non-CMake FindXXXX.cmake, tell
Cmake where to find it by setting the
CMAKE_MODULE_PATH variable

Think of FIND_PACKAGE as an #include

Qt with CMake

PROJECT(pfrac)

FIND PACKAGE(Qt4 REQUIRED)
INCLUDE(${QT USE FILE})

SET(pfrac SRCS main.cpp client.h client.cpp)
SET(pfrac MOC HEADERS client.h)

QT4 ADD RESOURCES(pfrac_ SRCS
${PROJECT SOURCE DIR}/pfrac.qrc)

QT4 WRAP CPP(pfrac MOC_SRCS
${pfrac_MOC_ HEADERS})

ADD EXECUTABLE(pfrac ${pfrac_ SRCS} $
{pfrac MOC SRCS}

TARGET LINK LIBRARIES(pfrac ${QT LIBRARIES})

Platform includes

CONFIGURE FILE(InputFile OutputFile
[COPYONLY] [ESCAPE QUOTES] [@ONLY])

Your source may need to set some options
depending on the platform, build type, etc

Create a wakeup.h.cmake and:

#cmakedefine VAR will be replaced with #define
VAR if VAR is true, else with /* #undef VAR */

evare will be replaced with the value of VAR
Also useful for .conf files

Platform includes (ll)

CHECK_TYPE_SIZE (needs
INCLUDE(CheckTypeSize))

TEST BIG_ENDIAN (needs
INCLUDE (CheckBigEndian))

CHECK INCLUDE_FILES (needs
INCLUDE(ChecklIncludeFiles))

Platform Includes (lll)

Cmakel.ists.txt

INCLUDE (CheckIncludeFiles)
CHECK INCLUDE FILES (
malloc.h HAVE MALLOC H)

wakeup.cpp

#include "wakeup.h"
#include “wakeup2.h”
#ifdef HAVE MALLOC H
#include <malloc.h>
telse

#include <stdlib.h>
#endif

void do something() {
void *buf=malloc(1024);

}

Part VI
Macros and functions

MACRO(<name> [argl [arg2 [arg3 ...]1])
COMMANDI1 (ARGS ...)
COMMANDZ2 (ARGS ...)

ENDMACRO(<name>)

They perform text substitution, just like #define
does in C

Danger! Variable-name clashing is possible if
using too generic names. Hint: prefix your
varnames with the macro name:
MACRO_VARNAME instead of VARNAME

New in Cmake 2.6

Real functions (like C), not just text-replace (a-
la C preprocessor)

Advantages: avoid variable-scope trouble
(hopefully)

New targets

Targets defined with ADD_CUSTOM_TARGET
are always considered outdated (i. e. rebuilt)

Two signatures for ADD _CUSTOM_COMMAND:

Same as ADD CUSTOM_TARGET but do not
rebuild if not needed

Execute a target before build, after build or before
link

For example, you can create
GENERATE_DOCUMENTATION

GENERATE_DOCUMENTATION

MACRO (GENERATE DOCUMENTATION DOXYGEN CONFIG FILE)

FIND PACKAGE (Doxygen)

SET (DOXYFILE FOUND false)

IF (EXISTS ${PROJECT SOURCE DIR}/${DOXYGEN CONFIG FILE})
SET (DOXYFILE FOUND true)

ENDIF (EXISTS ${PROJECT SOURCE DIR}/${DOXYGEN CONFIG FILE})

IF(DOXYGEN FOUND)
IF(DOXYFILE_FOUND)
Add target
ADD CUSTOM TARGET (doc ALL ${DOXYGEN_EXECUTABLE} "S
{PROJECT_SOURCE_DIR}/${DOXYGEN_CONFIG_FILE}")

Add .tag file and generated documentation to the list
of files we must erase when distcleaning

Read doxygen configuration file

FILE(READ ${PROJECT_SOURCE_DIR}/${DOXYGEN_CONFIG_FILE}
DOXYFILE_CONTENTS)

STRING(REGEX REPLACE "\n" ";" DOXYFILE LINES S
{DOXYFILE CONTENTS})

GENERATE_DOCUMENTATION (lI)

Parse .tag filename and add to list of files to delete
if it exists
FOREACH(DOXYLINE ${DOXYFILE CONTENTS})
STRING(REGEX REPLACE ".*GENERATE TAGFILE *= *(["
“\n]+).*" "\\1" DOXYGEN TAG FILE ${DOXYLINE})
ENDFOREACH(DOXYLINE)

ADD TO DISTCLEAN(${PROJECT BINARY DIR}/$
{DOXYGEN_TAG FILE})

Parse doxygen output doc dir and add to list of files
to delete if it exists

FOREACH(DOXYLINE ${DOXYFILE_CONTENTS})

STRING(REGEX REPLACE ".*OUTPUT DIRECTORY *= *([”

“\n]+).*" "\\1" DOXYGEN DOC_DIR ${DOXYLINE})

ENDFOREACH(DOXYLINE)

ADD TO DISTCLEAN(${PROJECT BINARY DIR}/$
{DOXYGEN DOC_DIR})

ADD_TO DISTCLEAN(${PROJECT BINARY DIR}/$
{DOXYGEN_DOC_DIR}.dir)

GENERATE_DOCUMENTATION (Il

ELSE(DOXYFILE FOUND)
MESSAGE(STATUS "Doxygen configuration file not found -
Documentation will not be generated")
ENDIF(DOXYFILE FOUND)
ELSE (DOXYGEN_FOUND)
MESSAGE (STATUS "Doxygen not found - Documentation will
not be generated")
ENDIF (DOXYGEN_ FOUND)
ENDMACRO (GENERATE_DOCUMENTATION)

Calling the outside world

EXECUTE_PROCESS

Execute and get output from a command, copy
files, remove files, etc

Cross-platform: avoid calling /bin/sh or cmd.exe
if EXECUTE_PROCESS suffices

Part VII
Creating your own finders

What is a finder

When compiling a piece of software which
links to third-party libraries, we need to know:
Where to find the .h files (-1 in gcc)

Where to find the libraries (.so/.dll/.lib/.dylib/...) (-L
in gce)

The filenames of the libraries we want to link to (-1
in gcc)

That's the basic information a finder needs to
return

Show status information, warnings or errors
MESSAGE([SEND ERROR | STATUS | FATAL ERROR]

"message to display" ...)

STRING

Manipulate strings or regular expressions
Many signatures

Files and Windows registry

GET _FILENAME_COMPONENT interacts with
the outside world

Sets a Cmake variable to the value of an
environment variable

Gets a value from a Windows registry key

Gets basename, extension, absolute path for a
flename

FILE

Read from / write to files

Remove files and directories

Translate paths between native and Cmake:
\ e/

Find libraries

FIND_ LIBRARY and the
CMAKE_LIBRARY_PATH variable

(this slide is only a stub)

Find header files

FIND FILE
(this slide is only a stub)

Find generic files

FIND PATH and the CMAKE_INCLUDE_PATH
variable

(this slide is only a stub)

PkgConfig support

PkgConfig is a helper tool used when compiling
applications and libraries

PkgConfig provides the -L, -1 and -I
parameters

Try to avoid it, as it's not always installed

Mostly Unix, available for Win32 but seldomly
used

Cmake provides two paths to use PkgConfig:
UsePkgConfig.cmake and FindPkgConfig.cmake

FIND PROGRAM
(this slide is only a stub)

TRY_COMPILE
(this slide is only a stub)

TRY_RUN
(this slide is only a stub)

Part VIII
Properties

CMAKE_MINIMUM_REQUIRED
(this slide is only a stub)

OPTION
(this slide is only a stub)

GET_CMAKE_PROPERTY
(this slide is only a stub)

GET _TARGET PROPERTY
(this slide is only a stub)

SET TARGET_ PROPERTIES
(this slide is only a stub)

SET SOURCE_FILES PROPERTIES
(this slide is only a stub)

Part |X
Useful variables

CMAKE_BINARY_DIR/CMAKE_SOURCE_DIR
(this slide is only a stub)

CMAKE_CURRENT BINARY DIR
/CMAKE_CURRENT SOURCE DIR

(this slide is only a stub)

PROJECT_BINARY_DIR/PROJECT_SOURCE_
DIR

(this slide is only a stub)

EXECUTABLE_OUTPUT_PATH/LIBRARY_OUT
PUT_PATH

(this slide is only a stub)

ENV ($SENV{name})
(this slide is only a stub)

CMAKE_SKIP_RPATH (important in Debian
and Debian-derivatives) (follow
http://www.cmake.org/Wiki/CMake_RPATH_han

)

(this slide is only a stub)

More variables

Use this snippet to list all variables and their
values:

get cmake property(P VARIABLES)
foreach(VAR in ${P})
message(STATUS
S{VAR}=S{S{VAR}}")

endforeach()

Part X
CPack

CPack generates installing packages:

RPM, DEB, GZip and Bzip2 distributions of both
binaries and source code

NSIS installers (for Microsoft Windows)
Mac OS X packages (.dmg)

In Cmake 2.4, .rom and .deb support works
but is not good

It can be used without Cmake

If used with Cmake, takes advantage of the
INSTALL declarations

Variables in CPack

There are bundle-specific variables: NSIS
needs some vars a ZIP does not need

Important: set variable values BEFORE you
INCLUDE(CPack)

INCLUDE (InstallRequiredSystemLibraries)

SET (CPACK_PACKAGE DESCRIPTION SUMMARY "Alarm clock")
SET (CPACK PACKAGE VENDOR "Pau Garcia i Quiles")
SET (CPACK_PACKAGE DESCRIPTION FILE

"$SCMAKE CURRENT SOURCE DIR}/ReadMe.txt")

SET (CPACK RESOURCE_FILE LICENSE

"$SCMAKE CURRENT SOURCE DIR}/Copyright.txt")

SET (CPACK_PACKAGE VERSION MAJOR "O0")

SET (CPACK_PACKAGE VERSION MINOR "0")

SET (CPACK PACKAGE VERSION PATCH "1")

SET (CPACK_PACKAGE INSTALL DIRECTORY "CMake $
{Cmake VERSION MAJOR}.${CMake VERSION MINOR}")

Example (cont.)

IF(WIN32 AND NOT UNIX)

SET (CPACK_PACKAGE _ICON " $

{Cmake SOURCE_DIR}/Utilities/Release\\\\InstallIcon.bmp")
SET(CPACK_NSIS INSTALLED ICON NAME
"bin\\\\MyExecutable.exe")

SET(CPACK_NSIS DISPLAY NAME " S

{CPACK PACKAGE INSTALL DIRECTORY} My Famous Project")
SET(CPACK _NSIS HELP_LINK "http:\\\\\\\\elpauer.org")

SET (CPACK_NSIS URL INFO ABOUT "http:\\\\\\\\elpauer.org")
SET(CPACK NSIS CONTACT "pgquiles@elpauer.org")

INCLUDE (CPack)

Part Xl
CTest

Cross-platform testing system which:

Retrieves source from CVS, Subversion or Perforce
(git support currently being worked on)

Configures and build the project

Configures, build and runs a set of predefined
runtime tests

Sends the results to a Dart/CDash dashboard
Other tests:

code coverage: using BullsEye ($$$) or gcov (free)
(note to self: show rbxspf code coverage)
memory checking

Very easy!
ENABLE TESTING ()
ADD TEST(testname testexecutable args)

Some scripting needed to:

Download sources from a VC system (CVS, SVN
and Perforce templates available, git in progress)

Upload to Dart/CDash dashboard (templates
available for HTTP, FTP, SCP and XML-RPC)

It can be used with non-CMake projects

Part XI|
CDash

CDash aggregates, analyzes and displays the
results of software testing processes
submitted from clients.

Replaces Dart

For example, build a piece of software on
Linux, Windows, Mac OS X, Solaris and AlX

Usually, you want two kinds of information:

Build results on all platforms
Test (Ctest) results on all platforms

Customizable usina XSL

BATCHMAKE
Dashboarc

DASHBOARD CALENDAR PREVIOUS CURRENT NEXT PROJECT
T e O T 2o [Rt

Nightly Changes as of 2008-03-28 01:00:00 EDT

Help
Nightly
Build Test
Site Build Name Update Cfg Build Time
Error Warn Min NotRun Fail Pass Min
purple litware darwin-gced.0.1 BB 0 o] 50 2.1 o a 5 0.2 |2008-03-28 02:22:00 EDT
few fury Linux-geced . {-rel-static Eil5| 1] a o Q B.3 o a 5 0.2|2008-03-28 07:22:00 EDT

kw panzer MacOSx-gecd O-rel-static B

=
=
=
=
w
~
=
1=
jen
o
(&

2008-03-28 03:36:00 EDT

No Continuous Builds

No Experimental Builds

No Coverage

No Dynamic Analysis

