

Learning CMake
Pau Garcia i Quiles <pgquiles@elpauer.org>

Arisnova Ingeniería de Sistemas
<arisnova@arisnova.com>

Part I
Meeting CMake

What is CMake

� Think of it as a meta-Make
� CMake is used to control the software

compilation process using simple
platform and compiler independent
configuration files

� CMake generates native makefiles and
workspaces that can be used in the
compiler environment of your choice

� Projects are described in CMakeLists.txt
files (usually one per subdir)

In-tree vs out-of-tree

� Where to place object files, executables
and libraries?

� In-tree:
� helloapp/hello.cpp
� helloapp/hello.exe

� Out-of-tree:
� helloapp/hello.cpp
� helloapp-build/hello.exe

� CMake prefers out-of-tree builds

The CMake workflow

� Have this tree:
� myapp

build
trunk

� cd myapp/build
� cmake ../trunk
� make (Unix) or open project (VC++)
� On Windows, you can also use

CMakeSetup (GUI). A multiplatform Qt
version is in development (3rd party)

Very simple executable

PROJECT(helloworld)

SET(hello_SRCS hello.cpp)

ADD_EXECUTABLE(hello ${hello_SRCS})

� PROJECT is not mandatory but you should
use it

� ADD_EXECUTABLE creates an executable
from the listed sources

� Tip: add sources to a list (hello_SRCS), do
not list them in ADD_EXECUTABLE

Showing verbose info

� To see the command line CMake
produces

� SET(CMAKE_VERBOSE_MAKEFILE on)
� Tip: only use it if your build is failing and

you need to find out why

Very simple library

PROJECT(mylibrary)

SET(mylib_SRCS library.cpp)

ADD_LIBRARY(my SHARED ${mylib_SRCS})

� ADD_LIBRARY creates an static library
from the listed sources

� Add SHARED to generate shared libraries
(Unix) or dynamic libraries (Windows)

Shared vs static libs

� Static libraries: on linking, add the used
code to your executable

� Shared/Dynamic libraries: on linking, tell
the executable where to find some code it
needs

� If you build shared libs in C++, you
should also use soversioning to state
binary compatibility (too long to be
discussed here)

The CMake cache

� Cmake is very fast on Unix but noticeably
slow on Windows

� The Cmake cache stores values which are
not usually changed

� Edit the cache using ccmake (Unix) or
CMakeSetup (Windows)

Regular expressions

� Worst side of Cmake: they are non-PCRE
� Use STRING(REGEX MATCH ...), STRING

(REGEX MATCHALL ...), STRING(REGEX
REPLACE ...)

� You will need to try once and again until
you find the right regex

� I'm implementing STRING(PCRE_REGEX
MATCH ...), etc based on PCRE. Not sure if
it will be on time for Cmake 2.6.0

Part II
Real world CMake:

dependencies between targets

Adding other sources

clockapp
build
trunk

doc
img
libwakeup

wakeup.cpp
wakeup.h

clock
clock.cpp
clock.h

PROJECT(clockapp)

ADD_SUBDIRECTORY(libwakeup)

ADD_SUBDIRECTORY(clock)

SET(wakeup_SRCS
wakeup.cpp)

ADD_LIBRARY(wakeup SHARED
${wakeup_SRCS})

SET(clock_SRCS clock.cpp)

ADD_EXECUTABLE(clock
${clock_SRCS})

Variables

� No need to declare them
� Usually, no need to specify type
� SET creates and modifies variables
� SET can do everything but LIST makes

some operations easier
� Use SEPARATE_ARGUMENTS to split

space-separated arguments (i.e. a string)
into a list (semicolon-separated)

Changing build parameters

� Cmake uses common, sensible defaults
for the preprocessor, compiler and linker

� Modify preprocessor settings with
ADD_DEFINITIONS and
REMOVE_DEFINITIONS

� Compiler settings: CMAKE_C_FLAGS and
CMAKE_CXX_FLAGS variables

� Tip: some internal variables (CMAKE_*)
are read-only and must be changed
executing a command

Flow control

� IF(expression)
...
ELSE(expression)
...
ENDIF(expression)

� Process a list:
FOREACH(loop_var)
...
ENDFOREACH(loop_var)

� WHILE(condition)
...
ENDWHILE(condition)

Always repeat the
expression/condition

It's possible to avoid
that but I won't tell
you how

Visual Studio special

� To show .h files in Visual Studio, add
them to the list of sources in
ADD_EXECUTABLE and ADD_LIBRARY

� SET(wakeup_SRCS wakeup.cpp)
IF(WIN32)

SET(wakeup_SRCS ${wakeup_SRCS}
wakeup.h)
ENDIF(WIN32)
ADD_LIBRARY(wakeup SHARED
${wakeup_SRCS})

� Use SOURCE_GROUP if all your sources
are in the same directory

Managing debug and
release builds
� SET(CMAKE_BUILD_TYPE Debug)

� As any other variable, it can be set from
the command line:
cmake -DCMAKE_BUILD_TYPE=Release ../trunk

� Specify debug and release targets and
3rdparty libs:
TARGET_LINK_LIBRARIES(wakeup RELEASE
${wakeup_SRCS})
TARGET_LINK_LIBRARIES(wakeupd DEBUG
${wakeup_SRCS})

Standard directories... not!

� Libraries built in your project (even if in a
different CmakeLists.txt) is automatic (in
rare occasions: ADD_DEPENDENCIES)

� If the 3rd party library or .h is in a
�standard� directory (PATH and/or
LD_LIBRARY_PATH) is automatic

� If in a non-standard dir, add that directory
to LINK_DIRECTORIES (library) and
INCLUDE_DIRECTORIES (headers)

make install

� INSTALL(TARGETS clock wakeup RUNTIME
DESTINATION bin LIBRARY DESTINATION
lib)

� Would install in /usr/local/bin and
/usr/local/lib (Unix) or
%PROGRAMFILES%\projectname
(Windows)

