Learning CMake

Pau Garcia i Quiles <pgquiles@elpauer.org>
Arisnova Ingenieria de Sistemas

<arisnova@arisnova.com>

Part |
Meeting CMake

What is CMake

Think of it as a meta-Make

CMake is used to control the software
compilation process using simple
platform and compiler independent
configuration files

CMake generates native makefiles and
workspaces that can be used in the
compiler environment of your choice

Projects are described in CMakelLists.txt
files (usually one per subdir)

In-tree vs out-of-tree

Where to place object files, executables
and libraries?

INn-tree:

helloapp/hello.cpp
helloapp/hello.exe

Out-of-tree:
helloapp/hello.cpp
helloapp-build/hello.exe

CMake prefers out-of-tree builds

The CMake workflow

Have this tree:

myapp
build
trunk

cd myapp/build
cmake ../trunk
make (Unix) or open project (VC++)

On Windows, you can also use
CMakeSetup (GUI). A multiplatform Qt
version is in development (3™ party)

Very simple executable

PROJECT(helloworld)
SET(hello SRCS hello.cpp)
ADD EXECUTABLE (hello ${hello_SRCS})

PROJECT is not mandatory but you should
use it

ADD EXECUTABLE creates an executable
from the listed sources

Tip: add sources to a list (hello SRCS), do
not list them in ADD EXECUTABLE

Showing verbose info

To see the command line CMake
produces

SET(CMAKE_VERBOSE_MAKEFILE on)

Tip: only use it if your build is failing and
you need to find out why

Very simple library

PROJECT(mylibrary)
SET(mylib SRCS library.cpp)
ADD LIBRARY(my SHARED ${mylib SRCS})

ADD LIBRARY creates an static library
from the listed sources

Add SHARED to generate shared libraries
(Unix) or dynamic libraries (Windows)

Shared vs static libs

Static libraries: on linking, add the used
code to your executable

Shared/Dynamic libraries: on linking, tell
the executable where to find some code it
needs

If you build shared libs in C++, you
should also use soversioning to state
binary compatibility (too long to be
discussed here)

The CMake cache

Cmake is very fast on Unix but noticeably
slow on Windows

The Cmake cache stores values which are
not usually changed

Edit the cache using ccmake (Unix) or
CMakeSetup (Windows)

Regular expressions

Worst side of Cmake: they are non-PCRE

Use STRING(REGEX MATCH ...), STRING
(REGEX MATCHALL ...), STRING(REGEX
REPLACE ...)

You will need to try once and again until
you find the right regex

I'm implementing STRING(PCRE_REGEX
MATCH ...), etc based on PCRE. Not sure if
it will be on time for Cmake 2.6.0

Part I
Real world CMake:

dependencies between targets

Adding other sources

PROJECT (clockapp)
Clocg{jiplp ; / ADD SUBDIRECTORY (libwakeup)
A trunk ADD SUBDIRECTORY (clock)
doc
img SET (wakeup SRCS
Alibwakeup BELSELD G)
wakeup.cpp ADD LIBRARY(wakeup SHARED
wakeup.h S {wakeup SRCS})
Aclock -~
clock.cpp SET(clock SRCS clock.cpp)
clock.h ADD EXECUTABLE (clock
${clock SRCS})

Variables

No need to declare them
Usually, no need to specify type
SET creates and modifies variables

SET can do everything but LIST makes
some operations easier

Use SEPARATE_ARGUMENTS to split
space-separated arguments (i.e. a string)
into a list (semicolon-separated)

Changing build parameters

Cmake uses common, sensible defaults
for the preprocessor, compiler and linker

Modify preprocessor settings with
ADD DEFINITIONS and
REMOVE_DEFINITIONS

Compiler settings: CMAKE_C_FLAGS and
CMAKE_CXX FLAGS variables

Tip: some internal variables (CMAKE_*)
are read-only and must be changed
executing a command

IF (expression) Always repeat the

expression/condition

ELSE (expression : : :
(expression) |ti5 nossible to avoid

that but | won't tell

ENDIF (expression)
you how

Process a list:
FOREACH(loop var)

ENDFOREACH (loop var)
WHILE (condition)

ENDWHILE (condition)

Visual Studio special

To show .h files in Visual Studio, add
them to the list of sources in
ADD EXECUTABLE and ADD_LIBRARY

SET (wakeup SRCS wakeup.cpp)
IF (WIN32)
SET (wakeup SRCS ${wakeup SRCS}
wakeup.h)
ENDIF (WIN32)
ADD_LIBRARY(wakeup SHARED
$ {wakeup SRCS})

Use SOURCE_GROUP if all your sources
are in the same directory

Managing debug and

release builds

SET(CMAKE BUILD TYPE Debug)

As any other variable, it can be set from

the command line:
cmake —DCMAKE_BUILD_TYPE=Release . ./trunk

Specify debug and release targets and
3rdparty libs:
TARGET_LINK_LIBRARIES(wakeup RELEASE
$ {wakeup SRCS})
TARGET_LINK_LIBRARIES(wakeupd DEBUG

$ {wakeup SRCS})

Standard directories... not!

Libraries built in your project (even if in a
different CmakelLists.txt) is automatic (in
rare occasions: ADD DEPENDENCIES)

If the 3™ party library or .h is in a
“standard” directory (PATH and/or
LD LIBRARY PATH) is automatic

If in @ non-standard dir, add that directory
to LINK _DIRECTORIES (library) and
INCLUDE_DIRECTORIES (headers)

INSTALL(TARGETS clock wakeup RUNTIME
DESTINATION bin LIBRARY DESTINATION
lib)

Would install in /usr/local/bin and
/usr/local/lib (Unix) or
%PROGRAMFILES%\projectname
(Windows)

