

Learning CMake
Pau Garcia i Quiles <pgquiles@elpauer.org>

Arisnova Ingeniería de Sistemas
<arisnova@arisnova.com>

The Kitware build and test chain

� Cmake
� CPack
� Ctest + BullsEye/gcov
� CDash

Part I
Meeting CMake

What is CMake

� Think of it as a meta-Make
� CMake is used to control the software

compilation process using simple platform and
compiler independent configuration files

� CMake generates native makefiles and
workspaces that can be used in the compiler
environment of your choice: gcc, Visual C++,
MingW, Cygwin, Eclipse, Borland, etc

� Projects are described in CMakeLists.txt files
(usually one per subdir)

In-tree vs out-of-tree

� Where to place object files, executables and
libraries?

� In-tree:
� helloapp/hello.cpp
� helloapp/hello.exe

� Out-of-tree:
� helloapp/hello.cpp
� helloapp-build/hello.exe

� CMake prefers out-of-tree builds

The CMake workflow

� Have this tree:
� myapp

build
trunk

� cd myapp/build
� cmake ../trunk
� make (Unix) or open project (VC++)
� On Windows, you can also use CMakeSetup

(GUI). A multiplatform Qt version is in
development (3rd party)

Very simple executable

� PROJECT(helloworld)
� SET(hello_SRCS hello.cpp)
� ADD_EXECUTABLE(hello ${hello_SRCS})

� PROJECT is not mandatory but you should use
it

� ADD_EXECUTABLE creates an executable
from the listed sources

� Tip: add sources to a list (hello_SRCS), do not
list them in ADD_EXECUTABLE

Showing verbose info

�To see the command line CMake produces
�SET(CMAKE_VERBOSE_MAKEFILE on)
�Tip: only use it if your build is failing and you
need to find out why

Very simple library

� PROJECT(mylibrary)
� SET(mylib_SRCS library.cpp)
� ADD_LIBRARY(my SHARED ${mylib_SRCS})

� ADD_LIBRARY creates an static library from
the listed sources

� Add SHARED to generate shared libraries
(Unix) or dynamic libraries (Windows)

Shared vs static libs

� Static libraries: on linking, add the used code to
your executable

� Shared/Dynamic libraries: on linking, tell the
executable where to find some code it needs

� If you build shared libs in C++, you should also
use soversioning to state binary compatibility
(too long to be discussed here)

The CMake cache

� Cmake is very fast on Unix but noticeably slow
on Windows

� The Cmake cache stores values which are not
usually changed

� Edit the cache using ccmake (Unix) or
CMakeSetup (Windows)

Regular expressions

� Worst side of Cmake: they are non-PCRE
� Use STRING(REGEX MATCH ...), STRING

(REGEX MATCHALL ...), STRING(REGEX
REPLACE ...)

� You will need to try once and again until you find
the right regex

� I'm implementing STRING(PCRE_REGEX
MATCH ...), etc based on PCRE. Not sure if it
will be on time for Cmake 2.6.0 � It won't be

Back/Forward compatibility

� Since Cmake 2.0, ask for at least a certain
version with CMAKE_MINIMUM_REQUIRED

� Since Cmake 2.6, tell Cmake to behave bug-
by-bug like a certain version with
CMAKE_POLICY(VERSION
major.minor[.patch])

Part II
Real world CMake:

dependencies between targets

Adding other sources

clockapp
build
trunk
doc
img
libwakeup

wakeup.cpp
wakeup.h

clock
clock.cpp
clock.h

PROJECT(clockapp)
ADD_SUBDIRECTORY(libwakeup)
ADD_SUBDIRECTORY(clock)

SET(wakeup_SRCS
wakeup.cpp)
ADD_LIBRARY(wakeup
SHARED ${wakeup_SRCS})

SET(clock_SRCS
clock.cpp)
ADD_EXECUTABLE(clock $
{clock_SRCS})

Variables

� No need to declare them
� Usually, no need to specify type
� SET creates and modifies variables
� SET can do everything but LIST makes some

operations easier
� Use SEPARATE_ARGUMENTS to split space-

separated arguments (i.e. a string) into a list
(semicolon-separated)

� In Cmake 2.4: global (name clashing problems)
� In Cmake 2.6: scoped

Changing build parameters

� Cmake uses common, sensible defaults for the
preprocessor, compiler and linker

� Modify preprocessor settings with
ADD_DEFINITIONS and
REMOVE_DEFINITIONS

� Compiler settings: CMAKE_C_FLAGS and
CMAKE_CXX_FLAGS variables

� Tip: some internal variables (CMAKE_*) are
read-only and must be changed executing a
command

Flow control

� IF(expression)
...
ELSE(expression)
...
ENDIF(expression)

� Process a list:
FOREACH(loop_var)
...
ENDFOREACH(loop_var)

� WHILE(condition)
...
ENDWHILE(condition)

Always repeat the
expression/condition
It's possible to avoid
that but I won't tell you
how

Visual Studio special

� To show .h files in Visual Studio, add them to the
list of sources in ADD_EXECUTABLE /
ADD_LIBRARY

� SET(wakeup_SRCS wakeup.cpp)
IF(WIN32)
SET(wakeup_SRCS ${wakeup_SRCS}

wakeup.h)
ENDIF(WIN32)
ADD_LIBRARY(wakeup SHARED ${wakeup_SRCS})

� Use SOURCE_GROUP if all your sources are in
the same directory

Managing debug and release
builds
� SET(CMAKE_BUILD_TYPE Debug)
� As any other variable, it can be set from the

command line:
cmake -DCMAKE_BUILD_TYPE=Release ../trunk

� Specify debug and release targets and 3rdparty
libs:
TARGET_LINK_LIBRARIES(wakeup RELEASE $
{wakeup_SRCS})
TARGET_LINK_LIBRARIES(wakeupd DEBUG $
{wakeup_SRCS})

Standard directories... not!

� Libraries built in your project (even if in a
different CmakeLists.txt) is automatic (in rare
occasions: ADD_DEPENDENCIES)

� If the 3rd party library or .h is in a �standard�
directory (PATH and/or LD_LIBRARY_PATH) is
automatic

� If in a non-standard dir, add that directory to
LINK_DIRECTORIES (library) and
INCLUDE_DIRECTORIES (headers)

make install

� INSTALL(TARGETS clock wakeup RUNTIME
DESTINATION bin LIBRARY DESTINATION lib)

� Would install in /usr/local/bin and /usr/local/lib
(Unix) or %PROGRAMFILES%\projectname
(Windows)

Part III
Platform checks and external

dependencies

Finding installed software

� FIND_PACKAGE(Qt4 REQUIRED)
� Cmake includes finders (FindXXXX.cmake) for

~130 software packages, many more available
in Internet

� If using a non-CMake FindXXXX.cmake, tell
Cmake where to find it by setting the
CMAKE_MODULE_PATH variable

� Think of FIND_PACKAGE as an #include

Qt with CMake
PROJECT(pfrac)
FIND_PACKAGE(Qt4 REQUIRED)
SET(DESIRED_QT_VERSION GREATER 4.2)
INCLUDE(${QT_USE_FILE})
SET(pfrac_SRCS main.cpp client.h
client.cpp)
SET(pfrac_MOC_HEADERS client.h)
QT4_ADD_RESOURCES(pfrac_SRCS $
{PROJECT_SOURCE_DIR}/pfrac.qrc)
QT4_WRAP_CPP(pfrac_MOC_SRCS $
{pfrac_MOC_HEADERS})
ADD_EXECUTABLE(pfrac ${pfrac_SRCS} $
{pfrac_MOC_SRCS}
TARGET_LINK_LIBRARIES(pfrac $
{QT_LIBRARIES})

Platform includes

� CONFIGURE_FILE(InputFile OutputFile
[COPYONLY] [ESCAPE_QUOTES] [@ONLY])

� Your source may need to set some options
depending on the platform, build type, etc

� Create a wakeup.h.cmake and:
� #cmakedefine VAR will be replaced with #define
VAR if VAR is true, else with /* #undef VAR */

� @VAR@ will be replaced with the value of VAR
� Also useful for .conf files

Platform includes (II)

� CHECK_TYPE_SIZE (needs
INCLUDE(CheckTypeSize))

� TEST_BIG_ENDIAN (needs
INCLUDE(CheckBigEndian))

� CHECK_INCLUDE_FILES (needs
INCLUDE(CheckIncludeFiles))

Platform Includes (III)
CmakeLists.txt
...
INCLUDE(CheckIncludeFiles)
CHECK_INCLUDE_FILES (
malloc.h HAVE_MALLOC_H)
...wakeup.cpp

#include "wakeup.h"
#include “wakeup2.h”
#ifdef HAVE_MALLOC_H
#include <malloc.h>
#else
#include <stdlib.h>
#endif
void do_something() {
void *buf=malloc(1024);
...
}

Part IV
Macros and functions

Macros

� MACRO(<name> [arg1 [arg2 [arg3 ...]]])
COMMAND1(ARGS ...)
COMMAND2(ARGS ...)
...
ENDMACRO(<name>)

� They perform text substitution, just like #define
does in C

� Danger! Variable-name clashing is possible if
using too generic names. Hint: prefix your
varnames with the macro name:
MACRO_VARNAME instead of VARNAME

Functions

� New in Cmake 2.6
� Real functions (like C), not just text-replace (a-

la C preprocessor)
� Advantages:
� Cmake processes CmakeLists.txt faster
� Avoid variable-scope trouble (hopefully)

New targets

�Targets defined with ADD_CUSTOM_TARGET
are always considered outdated (i. e. rebuilt)
�Two signatures for
ADD_CUSTOM_COMMAND:
� Same as ADD_CUSTOM_TARGET but do not

rebuild if not needed
� Execute a target before build, after build or before

link
�For example, you can create
GENERATE_DOCUMENTATION

GENERATE_DOCUMENTATION (I)
MACRO(GENERATE_DOCUMENTATION DOXYGEN_CONFIG_FILE)
FIND_PACKAGE(Doxygen)
SET(DOXYFILE_FOUND false)
IF(EXISTS ${PROJECT_SOURCE_DIR}/${DOXYGEN_CONFIG_FILE})
 SET(DOXYFILE_FOUND true)
ENDIF(EXISTS ${PROJECT_SOURCE_DIR}/${DOXYGEN_CONFIG_FILE})

IF(DOXYGEN_FOUND)
IF(DOXYFILE_FOUND)

 # Add target
 ADD_CUSTOM_TARGET(doc ALL ${DOXYGEN_EXECUTABLE} "$
{PROJECT_SOURCE_DIR}/${DOXYGEN_CONFIG_FILE}")

 # Add .tag file and generated documentation to the list
of files we must erase when distcleaning

 # Read doxygen configuration file
 FILE(READ ${PROJECT_SOURCE_DIR}/${DOXYGEN_CONFIG_FILE}
DOXYFILE_CONTENTS)
 STRING(REGEX REPLACE "\n" ";" DOXYFILE_LINES $
{DOXYFILE_CONTENTS})
...

GENERATE_DOCUMENTATION (II)
 # Parse .tag filename and add to list of files to
delete if it exists
 FOREACH(DOXYLINE ${DOXYFILE_CONTENTS})
 STRING(REGEX REPLACE ".*GENERATE_TAGFILE *= *([^
^\n]+).*" "\\1" DOXYGEN_TAG_FILE ${DOXYLINE})
 ENDFOREACH(DOXYLINE)
 ADD_TO_DISTCLEAN(${PROJECT_BINARY_DIR}/$
{DOXYGEN_TAG_FILE})

 # Parse doxygen output doc dir and add to list of files
to delete if it exists
 FOREACH(DOXYLINE ${DOXYFILE_CONTENTS})
 STRING(REGEX REPLACE ".*OUTPUT_DIRECTORY *= *([^
^\n]+).*" "\\1" DOXYGEN_DOC_DIR ${DOXYLINE})
 ENDFOREACH(DOXYLINE)
 ADD_TO_DISTCLEAN(${PROJECT_BINARY_DIR}/$
{DOXYGEN_DOC_DIR})
 ADD_TO_DISTCLEAN(${PROJECT_BINARY_DIR}/$
{DOXYGEN_DOC_DIR}.dir)
...

GENERATE_DOCUMENTATION (III)

 ELSE(DOXYFILE_FOUND)
 MESSAGE(STATUS "Doxygen configuration file not found -
Documentation will not be generated")
 ENDIF(DOXYFILE_FOUND)
ELSE(DOXYGEN_FOUND)
 MESSAGE(STATUS "Doxygen not found - Documentation will
not be generated")
ENDIF(DOXYGEN_FOUND)
ENDMACRO(GENERATE_DOCUMENTATION)

Calling the outside world

� EXECUTE_PROCESS
� Execute and get output from a command, copy

files, remove files, etc
� Cross-platform: avoid calling /bin/sh or cmd.exe

if EXECUTE_PROCESS suffices

Part V
Creating your own finders

What is a finder

� When compiling a piece of software which
links to third-party libraries, we need to know:
� Where to find the .h files (-I in gcc)
� Where to find the libraries (.so/.dll/.lib/.dylib/...) (-L

in gcc)
� The filenames of the libraries we want to link to (-l

in gcc)
� That's the basic information a finder needs to

return

MESSAGE

�Show status information, warnings or errors
MESSAGE([SEND_ERROR | STATUS | FATAL_ERROR]

 "message to display" ...)

STRING

�Manipulate strings or regular expressions
�Many signatures

Files and Windows registry

�GET_FILENAME_COMPONENT interacts with
the outside world
� Sets a Cmake variable to the value of an

environment variable
� Gets a value from a Windows registry key
� Gets basename, extension, absolute path for a

filename

FILE

�Read from / write to files
�Remove files and directories
�Translate paths between native and Cmake:
 \ � /

Find libraries

�FIND_LIBRARY and the
CMAKE_LIBRARY_PATH variable

Find header files

�FIND_FILE

Find generic files

�FIND_PATH and the
CMAKE_INCLUDE_PATH variable

PkgConfig support

�PkgConfig is a helper tool used when compiling
applications and libraries
�PkgConfig provides the -L, -l and -I
parameters
�If some software package has PkgConfig
support, use it: the finder will be easier to
develop and less error-prone
�PKGCONFIG(package includedir libdir linkflags
cflags) (needs INCLUDE(UsePkgConfig))
�Mostly Unix, available for Win32 but seldomly
used

�FIND_PROGRAM

�TRY_COMPILE

�TRY_RUN

Part VI
Properties

�CMAKE_MINIMUM_REQUIRED

�OPTION
�

�GET_CMAKE_PROPERTY

�GET_TARGET_PROPERTY

�SET_TARGET_PROPERTIES

Part VII
Useful variables

�CMAKE_BINARY_DIR/CMAKE_SOURCE_DIR

�CMAKE_CURRENT_BINARY_DIR /CMAKE_C
URRENT_SOURCE_DIR

�PROJECT_BINARY_DIR/PROJECT_SOURCE
_DIR

�EXECUTABLE_OUTPUT_PATH/LIBRARY_O
UTPUT_PATH

� ENV ($ENV{name})

� CMAKE_SKIP_RPATH (important in Debian
and Debian-derivatives) (follow
http://www.cmake.org/Wiki/CMake_RPATH_han
dling)

More variables

� Use this snippet to list all variables and their
values:

get_cmake_property(P VARIABLES)
 foreach(VAR in ${P})
 message(STATUS
 " ${VAR}=${${VAR}}")
 endforeach()

Part VIII
CPack

Features

� CPack generates installing packages:
� RPM, DEB, GZip and Bzip2 distributions of both

binaries and source code
� NSIS installers (for Microsoft Windows)
� Mac OS X packages (.dmg)

� In Cmake 2.4, .rpm and .deb support works
but is not good

� It can be used without Cmake
� If used with Cmake, takes advantage of the

INSTALL declarations

Variables in CPack

� There are bundle-specific variables: NSIS
needs some vars a ZIP does not need

� Important: set variable values BEFORE you
INCLUDE(CPack)

Example
INCLUDE(InstallRequiredSystemLibraries)

SET(CPACK_PACKAGE_DESCRIPTION_SUMMARY "Alarm clock")
SET(CPACK_PACKAGE_VENDOR "Pau Garcia i Quiles")
SET(CPACK_PACKAGE_DESCRIPTION_FILE
"$CMAKE_CURRENT_SOURCE_DIR}/ReadMe.txt")
SET(CPACK_RESOURCE_FILE_LICENSE
"$CMAKE_CURRENT_SOURCE_DIR}/Copyright.txt")
SET(CPACK_PACKAGE_VERSION_MAJOR "0")
SET(CPACK_PACKAGE_VERSION_MINOR "0")
SET(CPACK_PACKAGE_VERSION_PATCH "1")
SET(CPACK_PACKAGE_INSTALL_DIRECTORY "CMake $
{Cmake_VERSION_MAJOR}.${CMake_VERSION_MINOR}")
...

Example (cont.)

IF(WIN32 AND NOT UNIX)
SET(CPACK_PACKAGE_ICON "$
{Cmake_SOURCE_DIR}/Utilities/Release\\\\InstallIcon.bmp"
)
SET(CPACK_NSIS_INSTALLED_ICON_NAME
"bin\\\\MyExecutable.exe")
SET(CPACK_NSIS_DISPLAY_NAME "$
{CPACK_PACKAGE_INSTALL_DIRECTORY} My Famous Project")
SET(CPACK_NSIS_HELP_LINK "http:\\\\\\\\elpauer.org")
SET(CPACK_NSIS_URL_INFO_ABOUT
"http:\\\\\\\\elpauer.org")
SET(CPACK_NSIS_CONTACT "pgquiles@elpauer.org")
...

INCLUDE(CPack)

Part IX
CTest

Features

� Cross-platform testing system which:
� Retrieves source from CVS, Subversion or Perforce

(git support currently being worked on)
� Configures and build the project
� Configures, build and runs a set of predefined

runtime tests
� Sends the results to a Dart/CDash dashboard

� Other tests:
� code coverage (using BullsEye $$$)
� memory checking

Example

� Very easy!
� ENABLE_TESTING()

� ADD_TEST(testname testexecutable args)

� Some scripting needed to:
� Download sources from a VC system (CVS, SVN

and Perforce templates available, git in progress)
� Upload to Dart/CDash dashboard (templates

available for HTTP, FTP, SCP and XML-RPC)
� It can be used with non-CMake projects

Part X
CDash

Features

� CDash aggregates, analyzes and displays the
results of software testing processes
submitted from clients.

� Replaces Dart
� For example, build a piece of software on

Linux, Windows, Mac OS X, Solaris and AIX
� Usually, you want two kinds of information:
� Build results on all platforms
� Test (Ctest) results on all platforms

� Customizable using XSL

Example

