Learning CMake

Pau Garcia i Quiles <pgquiles@elpauer.org>

Arisnova Ingenieria de Sistemas
<arisnova@arisnova.com>

The Kitware build and test chain

Cmake
CPack .
Ctest + BullsEye/gcov

CDash

Part |
Meeting CMake

What is CMake

Think of it as a meta-Make

CMake is used to control the software
compilation process using simple platform and
compiler independent configuration files
CMake generates native makefiles and
workspaces that can be used in the compiler
environment of your choice: gcc, Visual C++,
MingW, Cygwin, Eclipse, Borland, etc
Projects are described in CMakelLists.txt files
(usually one per subdir)

In-tree vs out-of-tree

Where to place object files, executables and
libraries?
In-tree:

helloapp/hello.cpp

helloapp/hello.exe

Out-of-tree:
helloapp/hello.cpp

helloapp-build/hello.exe
CMake prefers out-of-tree builds

The CMake workflow

Have this tree:

myapp
build
trunk

cd myapp/build

cmake ../trunk

make (Unix) or open project (VC++)

On Windows, you can also use CMakeSetup
(GUI). A multiplatform Qt version is in
development (3™ party)

Very simple executable

PROJECT(helloworld)
SET(hello SRCS hello.cpp)
ADD EXECUTABLE(hello ${hello SRCS})

PROJECT is not mandatory but you should use
it

ADD EXECUTABLE creates an executable
from the listed sources

Tip: add sources to a list (hello_ SRCS), do not
list them in ADD_EXECUTABLE

Showing verbose info

To see the command line CMake produces
SET(CMAKE_VERBOSE MAKEFILE on)
Tip: only use it if your build is failing and you
need to find out why

Very simple library

PROJECT(mylibrary)
SET(mylib SRCS library.cpp)
ADD LIBRARY(my SHARED ${mylib SRCS})

ADD_LIBRARY creates an static library from
the listed sources

Add SHARED to generate shared libraries
(Unix) or dynamic libraries (Windows)

Shared vs static libs

Static libraries: on linking, add the used code to
your executable

Shared/Dynamic libraries: on linking, tell the
executable where to find some code it needs

If you build shared libs in C++, you should also
use soversioning to state binary compatibility
(too long to be discussed here)

The CMake cache

Cmake is very fast on Unix but noticeably slow
on Windows

The Cmake cache stores values which are not
usually changed

Edit the cache using ccmake (Unix) or
CMakeSetup (Windows)

Regular expressions

Worst side of Cmake: they are non-PCRE

Use STRING(REGEX MATCH ...), STRING
(REGEX MATCHALL ...), STRING(REGEX
REPLACE ...)

You will need to try once and again until you find
the right regex

I'm implementing STRING(PCRE_REGEX
MATCH ...), etc based on PCRE. Not sure if it
will be on time for Cmake 2.6.0 — It won't be

Back/Forward compatibility

Since Cmake 2.0, ask for at least a certain
version with CMAKE_MINIMUM REQUIRED
Since Cmake 2.6, tell Cmake to behave bug-
by-bug like a certain version with
CMAKE_POLICY(VERSION
major.minor|.patch])

Part I
Real world CMake:

dependencies between targets

Adding other sources

PROJECT (clockapp)
clockapp ADD SUBDIRECTORY (libwakeup)
build //////' ADD SUBDIRECTORY (clock)
Atrunk
doc
. SET (wakeup SRCS
img I —
JAbwakeup WEINTDo EI210)
ADD LIBRARY (wakeup
wakeup.cpp — K e
wakeup.h SHARED ${wakeup })
cAock
ClOCk.Cpp SET(ClOCk_SRCS
silaals Ja clock.cpp)
ADD EXECUTABLE (clock $
{clock SRCS})

No need to declare them

Usually, no need to specify type

SET creates and modifies variables

SET can do everything but LIST makes some
operations easier

Use SEPARATE _ARGUMENTS to split space-
separated arguments (i.e. a string) into a list
(semicolon-separated)

In Cmake 2.4: global (name clashing problems)
In Cmake 2.6: scoped

Changing build parameters

Cmake uses common, sensible defaults for the
preprocessor, compiler and linker

Modify preprocessor settings with

ADD DEFINITIONS and
REMOVE_DEFINITIONS

Compiler settings: CMAKE_C_ FLAGS and
CMAKE_CXX FLAGS variables

Tip: some internal variables (CMAKE_*) are
read-only and must be changed executing a
command

IF (expression) Always repeat the

... expression/condition
ELSE (expression) It's possible to avoid
.o that but | won't tell you
ENDIF (expression) how

Process a list:

FOREACH (loop var)

ENDFOREACH (loop var)
WHILE (condition)

ENDWHILE (condition)

Visual Studio special

To show .h files in Visual Studio, add them to the
list of sources in ADD _EXECUTABLE /

ADD LIBRARY
SET (wakeup SRCS wakeup.cpp)
IF (WIN32)
SET (wakeup SRCS ${wakeup SRCS}
wakeup.h)
ENDIF (WIN32)
ADD LIBRARY(wakeup SHARED S {wakeup SRCS})

Use SOURCE_GROUP if all your sources are in
the same directory

Managing debug and release
builds

SET(CMAKE_BUILD TYPE Debug)

As any other variable, it can be set from the
command line:

cmake -DCMAKE BUILD TYPE=Release ../trunk
Specify debug and release targets and 3rdparty
libs:

TARGET LINK LIBRARIES(wakeup RELEASE $
{wakeup SRCS})

TARGET LINK LIBRARIES(wakeupd DEBUG $
{wakeup SRCS})

Standard directories... not!

Libraries built in your project (even if in a
different CmakelLists.txt) is automatic (in rare
occasions: ADD_DEPENDENCIES)

If the 3™ party library or .h is in a “standard”
directory (PATH and/or LD _LIBRARY_PATH) is
automatic

If in a non-standard dir, add that directory to
LINK_DIRECTORIES (library) and

INCLUDE DIRECTORIES (headers)

INSTALL(TARGETS clock wakeup RUNTIME
DESTINATION bin LIBRARY DESTINATION lib)
Would install in /usr/local/bin and /usr/local/lib
(Unix) or %PROGRAMFILES%\projectname
(Windows)

Part |
Platform checks and external
dependencies

Finding installed software

FIND PACKAGE(Qt4 REQUIRED)

Cmake includes finders (FindXXXX.cmake) for
~130 software packages, many more available
In Internet

If using a non-CMake FindXXXX.cmake, tell
Cmake where to find it by setting the
CMAKE_MODULE_PATH variable

Think of FIND PACKAGE as an #include

Qt with CMake

PROJECT(pfrac)

FIND PACKAGE(Qt4 REQUIRED)

SET(DESIRED QT VERSION GREATER 4.2)
INCLUDE (${QT_USE_FILE})

SET(pfrac SRCS main.cpp client.h
client.cpp)

SET(pfrac_MOC HEADERS client.h)

QT4 ADD RESOURCES(pfrac SRCS $
{PROJECT SOURCE DIR}/pfrac.qgrc)

QT4 WRAP CPP(pfrac MOC_SRCS $
{pfrac_MOC_HEADERS})

ADD EXECUTABLE(pfrac ${pfrac SRCS} $
{pfrac_MOC SRCS}

TARGET LINK LIBRARIES (pfrac $

{OT LIBRARIES})

Platform includes

CONFIGURE FILE(InputFile OutputFile
[COPYONLY] [ESCAPE QUOTES] [@ONLY])

Your source may need to set some options
depending on the platform, build type, etc

Create a wakeup.h.cmake and:

#cmakedefine VAR will be replaced with #define
VAR if VAR is true, else with /* #undef VAR */

evare will be replaced with the value of VAR
Also useful for .conf files

Platform includes (lI)

CHECK TYPE_ SIZE (needs
INCLUDE(CheckTypeSize))
TEST_BIG_ENDIAN (needs
INCLUDE(CheckBigEndian))
CHECK INCLUDE_FILES (needs
INCLUDE(CheckincludeFiles))

Platform Includes (lll)

wakeup.cpp
#include "wakeup.h"

CmakelLists.txt

INCLUDE (CheckIncludeFiles)
CHECK INCLUDE FILES (
malloc.h HAVE MALLOC H)

#include “wakeup2.h”
#ifdef HAVE MALLOC H
#include <malloc.h>
telse

#include <stdlib.h>
#endif

void do something() {
void *buf=malloc(1024);

}

Part IV
Macros and functions

MACRO(<name> [argl [arg2 [arg3 ...]1])
COMMAND1 (ARGS ...)
COMMAND2 (ARGS ...)

ENDMACRO(<name>)

They perform text substitution, just like #define
does in C

Danger! Variable-name clashing is possible if
using too generic names. Hint: prefix your
varnames with the macro name:

MACRO_ VARNAME instead of VARNAME

New in Cmake 2.6
Real functions (like C), not just text-replace (a-
la C preprocessor)
Advantages:
Cmake processes CmakelLists.txt faster

Avoid variable-scope trouble (hopefully)

New targets

Targets defined with ADD_CUSTOM_TARGET
are always considered outdated (i. e. rebuilt)

Two signatures for

ADD CUSTOM_ COMMAND:
Same as ADD CUSTOM_TARGET but do not
rebuild if not needed

Execute a target before build, after build or before
link

For example, you can create
GENERATE_DOCUMENTATION

GENERATE_DOCUMENTATION ()

MACRO (GENERATE DOCUMENTATION DOXYGEN CONFIG FILE)

FIND PACKAGE (Doxygen)

SET(DOXYFILE FOUND false)

IF (EXISTS ${PROJECT SOURCE DIR}/${DOXYGEN CONFIG FILE})
SET(DOXYFILE FOUND true)

ENDIF (EXISTS ${PROJECT SOURCE DIR}/${DOXYGEN CONFIG FILE})

IF(DOXYGEN_FOUND)
IF(DOXYFILE FOUND)
Add target
ADD CUSTOM_ TARGET (doc ALL ${DOXYGEN_EXECUTABLE} "S
{PROJECT_SOURCE_DIR}/${DOXYGEN_CONFIG_FILE}")

Add .tag file and generated documentation to the list
of files we must erase when distcleaning

Read doxygen configuration file

FILE(READ ${PROJECT_SOURCE_DIR}/${DOXYGEN_CONFIG_FILE}
DOXYFILE CONTENTS)

STRING(REGEX REPLACE "\n" ";" DOXYFILE LINES S
{DOXYFILE CONTENTS})

GENERATE_DOCUMENTATION (ll)

Parse .tag filename and add to list of files to
delete if it exists

FOREACH(DOXYLINE ${DOXYFILE_CONTENTS})

STRING(REGEX REPLACE ".*GENERATE TAGFILE *= *([°

“\n]+).*" "\\1" DOXYGEN TAG_FILE S {DOXYLINE})

ENDFOREACH(DOXYLINE)

ADD _TO_DISTCLEAN (${PROJECT_BINARY_DIR}/$
{DOXYGEN_TAG_FILE})

Parse doxygen output doc dir and add to list of files
to delete if it exists

FOREACH(DOXYLINE ${DOXYFILE_CONTENTS})

STRING(REGEX REPLACE ".*OUTPUT DIRECTORY *= *([°

“\n]+).*" "\\1" DOXYGEN DOC_DIR ${DOXYLINE})

ENDFOREACH(DOXYLINE)

ADD_TO_DISTCLEAN(${PROJECT_ BINARY DIR}/$
{DOXYGEN_DOC_DIR})

ADD TO DISTCLEAN(${PROJECT BINARY DIR}/$
{DOXYGEN DOC_ DIR}.dir)

GENERATE_DOCUMENTATION (lil)

ELSE(DOXYFILE FOUND)

MESSAGE(STATUS "Doxygen configuration file not found -
Documentation will not be generated")
ENDIF(DOXYFILE FOUND)
ELSE (DOXYGEN_FOUND)

MESSAGE (STATUS "Doxygen not found - Documentation will
not be generated")
ENDIF (DOXYGEN_FOUND)
ENDMACRO (GENERATE DOCUMENTATION)

Calling the outside world

EXECUTE_PROCESS
Execute and get output from a command, copy
files, remove files, etc

Cross-platform: avoid calling /bin/sh or cmmd.exe
if EXECUTE_PROCESS suffices

Part V
Creating your own finders

What is a finder

When compiling a piece of software which

links to third-party libraries, we need to know:
Where to find the .h files (-I in gcc)

Where to find the libraries (.so/.dll/.lib/.dylib/...) (-L
in gcc)
The filenames of the libraries we want to link to (-1
in gcc)

That's the basic information a finder needs to
return

Show status information, warnings or errors
MESSAGE ([SEND_ERROR | STATUS | FATAL_ERROR]

"message to display" ...)

STRING

Manipulate strings or regular expressions
Many signatures

Files and Windows registry

GET_FILENAME_COMPONENT interacts with

the outside world
Sets a Cmake variable to the value of an
environment variable

Gets a value from a Windows registry key

Gets basename, extension, absolute path for a
filename

FILE

Read from / write to files

Remove files and directories

Translate paths between native and Cmake:
\ e/

Find libraries

FIND_LIBRARY and the
CMAKE_LIBRARY_PATH variable

Find header files

FIND_FILE

Find generic files

FIND_PATH and the
CMAKE_INCLUDE_PATH variable

PkgConfig support

PkgConfig is a helper tool used when compiling
applications and libraries

PkgConfig provides the -L, -1 and -I
parameters

If some software package has PkgConfig
support, use it: the finder will be easier to
develop and less error-prone
PKGCONFIG(package includedir libdir linkflags
cflags) (needs INCLUDE(UsePkgConfig))
Mostly Unix, available for Win32 but seldomly
used

FIND_PROGRAM

TRY_COMPILE

TRY RUN

Part VI
Properties

CMAKE_MINIMUM_REQUIRED

OPTION

GET_CMAKE_PROPERTY

GET_TARGET_PROPERTY

SET_TARGET_PROPERTIES

Part VII
Useful variables

CMAKE_BINARY DIR/CMAKE_SOURCE_DIR

CMAKE_CURRENT BINARY DIR /CMAKE C
URRENT SOURCE DIR

PROJECT BINARY DIR/PROJECT SOURCE
"DIR

EXECUTABLE_OUTPUT_PATH/LIBRARY_O
UTPUT_PATH

ENV ($ENV{name})

CMAKE_SKIP_RPATH (important in Debian
and Debian-derivatives) (follow
http://www.cmake.org/Wiki/CMake RPATH_han
dling)

More variables

Use this snippet to list all variables and their
values:

get cmake property(P VARIABLES)
foreach(VAR in ${P})
message(STATUS
S{VAR}=§{S{VAR}}")

endforeach|()

Part VIII
CPack

CPack generates installing packages:

RPM, DEB, GZip and Bzip2 distributions of both
binaries and source code

NSIS installers (for Microsoft Windows)
Mac OS X packages (.dmg)

In Cmake 2.4, .rom and .deb support works
but is not good

It can be used without Cmake

If used with Cmake, takes advantage of the
INSTALL declarations

Variables in CPack

There are bundle-specific variables: NSIS
needs some vars a ZIP does not need
Important: set variable values BEFORE you
INCLUDE(CPack)

INCLUDE (InstallRequiredSystemLibraries)

SET (CPACK_PACKAGE DESCRIPTION SUMMARY "Alarm clock")
SET (CPACK_PACKAGE VENDOR "Pau Garcia i Quiles")
SET (CPACK_PACKAGE DESCRIPTION FILE

"$CMAKE CURRENT SOURCE_DIR}/ReadMe.txt")

SET (CPACK_RESOURCE_FILE LICENSE

"$CMAKE CURRENT SOURCE_DIR}/Copyright.txt")

SET (CPACK_PACKAGE VERSION MAJOR "0")

SET (CPACK_PACKAGE VERSION MINOR "O0")

SET (CPACK_PACKAGE VERSION PATCH "1")

SET (CPACK_PACKAGE INSTALL DIRECTORY "CMake $
{Cmake VERSION MAJOR}.${CMake VERSION MINOR}")

Example (cont.)

IF(WIN32 AND NOT UNIX)

SET (CPACK_PACKAGE_ICON " S

{Cmake SOURCE DIR}/Utilities/Release\\\\InstallIcon.bmp"
)

SET(CPACK_NSTIS INSTALLED ICON_ NAME
"bin\\\\MyExecutable.exe")

SET (CPACK_NSIS DISPLAY NAME "$

{CPACK_ PACKAGE INSTALL DIRECTORY} My Famous Project")
SET(CPACK _NSIS HELP LINK "http:\\\\\\\\elpauer.org")
SET (CPACK_NSIS URL_INFO_ABOUT
"http:\\\\\\\\elpauer.org")

SET(CPACK _NSIS CONTACT "pgquiles@elpauer.org")

INCLUDE (CPack)

Part IX
CTest

Cross-platform testing system which:
Retrieves source from CVS, Subversion or Perforce
(git support currently being worked on)

Configures and build the project

Configures, build and runs a set of predefined
runtime tests

Sends the results to a Dart/CDash dashboard

Other tests:
code coverage (using BullsEye $$$)

memory checking

Very easy!

ENABLE TESTING ()
ADD TEST(testname testexecutable args)
Some scripting needed to:

Download sources from a VC system (CVS, SVN
and Perforce templates available, git in progress)

Upload to Dart/CDash dashboard (templates
available for HTTP, FTP, SCP and XML-RPC)

It can be used with non-CMake projects

Part X
CDash

= CDash aggregates, analyzes and displays the
results of software testing processes
submitted from clients.

= Replaces Dart

= For example, build a piece of software on
Linux, Windows, Mac OS X, Solaris and AlIX

= Usually, you want two kinds of information:
= Build results on all platforms

= Test (Ctest) results on all platforms
= Customizable using XSL

Mightly Changes as of 2008-03-28 01:00:00 EDT Help

Nightly
Build Test
Site. Build Name Update Cfg Build Time
Error Warl Mi NotRu Fail Pass Mi
purple kitware darwin-geea 0.1 B8 i} a a 50 2.1 o il 5 0.2 |2008-03-28 02:22.00 EDT
e fury Linwegeed 1-rel-static EIE i}] o] 8.3 o o 5 0.2 | 2008-03-28 07:22:00 EDT
lew panzer MacOSK-geed O-rel-static E1E o ol o 16 ar a 0 g 0.2|2008-03-28 03:36.00 EDT

No Continuous Builds

No Experimental Builds

MNo Dynamic Analysis

